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Solution 7

1. Consider maps from R to itself. Provide explicit examples of continuous maps with exactly
one, two and three fixed points.

Solution. Let f be our function. We consider g(x) = f(x) — z. It suffices to produce
examples with exactly one, two and three roots. For instance, g1(x) = —z has exactly one
root. go(x) = 2% — 1 has exactly two roots. g3(x) = (x —1)(x — 2)(z — 3) has exactly three
roots. The corresponding f1, fa, f3 fulfil our requirement.

1
2
Solution. Let Tz = icos’z. Then T'(z) = —3sin2z so |T'| < 1/2. It follows that
Tz — Ty| < 3|z —y|, T is a contraction. By the fixed point theorem, we conclude that

T = % cos? z has a unique solution.

2. Show that the equation = = i cos? z has a unique solution in R.

3. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T* becomes a contraction. Show that 7' admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T* is a contraction, there is a unique fixed point € X such that
Tkz = x. Then TFx = T*Tx = Tx shows that Tz is also a fixed point of T%. From the
uniqueness of fixed point we conclude Tx = x, that is, x is a fixed point for T. Uniqueness
is clear since any fixed point of T is also a fixed point of T*.

4. Show that the equation 2zsinz — 2% + 2 = 0.001 has a root near = = 0.

Solution. Here ¥(z) = 2rsinz — %, We need to find some r,~ so it is a contraction.
We have

(W(21) — W(z2)| = |2mi(sinay — sinag) + 2(zy — 2) sinay — (x] — xé‘)‘

= ‘2@'1 cosc(x1 — x2) + 2(x1 — x2) sinxzg — (1’% + :):%)(:):1 + x9) (11 — xg)}
< 2r4r+ (2r2)(27“))|x1 — x| .

Taking r = 1/4,y = 2r + r + (2r?)(2r) = 13/16 < 1. By the Perturbation of Identity
Theorem, the equation 2xsinz — z* + x = y is solvable for any y satisfying |y| < R =
(1 —~)r = 0.0468, including y = 0.001.

5. Can you solve the system of equations

r+yt=0, y—22=00157

Solution. Here we work on R? and ®(z,y) = (z,y) + ¥(z,y) where ¥(z,y) = (—y*, z?).
We have ®(0,0) = (0,0) and want to solve ®(z1,z2) = (0,0.015). In the following points
in R? are denoted by p = (x1,%1),q = (x2,%2), etc.

1T(p) = ¥(gll2 = [I(—yi + vz 2] — 3)|2
= ((wF +93) (w1 + y2) (Y2 — 1), (w1 + 22) (21 — 22) |2
< V(@22 x2r)2+ (2r)%p — gl
= 2r(1+4r%)[lp—qll2 -

(We have used |x1 — 22|, |y1 — y2| < |l[p — ¢||2.) Hence by taking » = 1/4,v = 5/8 and
R =3/24 =0.125. As 0.015 < 0.125, the system is solvable.
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6. Can you solve the system of equations
r+y—a22=0, x—y+axysiny=—0.002 7

Hint: Put the system in the form x+--- =0, y+-.--=0, first.

Solution. First we rewrite the system in the form of I + ¥. Indeed, by adding up and
subtracting the equations, we see that the system is equivalent to

z+ (=2 + zysiny)/2 = —0.001, y+ (—x? — zysiny)/2 = 0.001 .

Now we can take

1
U(z,y) = 5(—$2 + xysiny, —2? — zysiny)

and proceed as in the previous problem.

7. Let A = {a;;} be an n x n matrix. Show that
x| <[> ad Jal.
Z’7j

Solution. Let y = Ax. We have

Y = E (lijl’j, i:1,~'-,n.
J
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By Cauchy-Schwarz Inequality,

Taking square,

Summing over i,
2 2 2
Yi = ;5 ry,
( 12 J

and the result follows by taking root.

Note. This result was used in the proof of Proposition 3.5.

8. Let A = (a;;) be an n x n matrix. Show that the matrix I+ A is invertible if 3, . a?j < 1.
Give an example showing that I + A could become singular when Zz j a?j =1.

Solution. Let ®(xz) = Iz + Ax so that ¥(x) = Az for x € R™. By the previous problem,

[W(w1) = Wlaa)| = [Alor = 22)| <[>y o]

Take v = ’/Zi,j a?j < 1. V¥ is a contraction and there is only one root of the equation
®(x) = 0 in the ball B,(0). However, since we already know ®(0) = 0, 0 is the unique root.
Now, we claim that I+ A is non-singular, for there is some z € R" satisfying (I + A)z = 0,
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10.

we can find a small number « such that az € B,(0). By what we have just shown, az =0
so z = 0, that is, I + A is non-singular and thus invertible.

The sharpness of the condition a?j < 1 can be seen from considering the 2 x 2-matrix
A where all a;; = 0 except az = —1.

Note. See how linearity plays its role in the proof.

. Let f:R — Rbe C?and f(zo) =0, f’(2¢) # 0. Show that there exists some p > 0 such

that

G
fi(x)’

is a contraction. This provides a justification for Newton’s method in finding roots for an

equation.

Te=x 356(1’0—071‘0‘"0)7

f(@) 1" (@)
f'(z)?

is O in a neighborhood of zo with T'(z¢) = o, T'(z0) = 0 and there exists some p > 0

Solution. 7T'(z) = . Since f is C? and f(z0) = 0, f'(xg) # 0, it follows that T

1
\T'(m)|§§ x € [xo — p,x0 + p)-
As a result, T is a contraction in [zg — p, z¢ + p]. By Contraction Mapping Principle, there
is a fixed point for T'. From the definition of 7', this fixed point is a root for the equation

f(z)=0.

Consider the iteration
Tnt1 = axn(l —2y), 1 €[0,1] .

Find

(a) The range of « so that {x,} remains in [0, 1] .
(b) The range of « so that the iteration has a unique fixed point 0 in [0, 1].

(c) Show that for a € [0, 1] the fixed point 0 is attracting in the sense: x,, — 0 whenever
To € [0, 1}.

Solution. Let Tz = aw(1 —x). The max of T attains at 1/2 so the maximal value is a//4.
Therefore, the range of « is [0,4] so that T maps [0, 1] to itself. Next, 0 is always a fixed
point of T'. To get no other, we set z = ax(1—x) and solve for x and get z = (a—1) /. So
there is no other fixed point if a € [0,1]. Finally, it is clear that T" becomes a contraction
when « € [0,1), so the sequence {z,} with zg € [0,1] , z,, = T"x0, always tends to 0 as
n — oo. Although T is not a contraction when « = 1, one can still use elementary mean
(that is, {x,} is always decreasing,) to show that 0 is an attracting fixed point.



